Creating the Radius Gap without Mass Loss

Author:

Lee Eve J.ORCID,Karalis AmaliaORCID,Thorngren Daniel P.ORCID

Abstract

Abstract The observed exoplanet population features a gap in the radius distribution that separates the smaller super-Earths (≲1.7 Earth radii) from the larger sub-Neptunes (∼1.7–4 Earth radii). While mass-loss theories can explain many of the observed features of this radius valley, it is difficult to reconcile them with the potentially rising population of terrestrials beyond orbital periods of ∼30 days. We investigate the ability of gas accretion during the gas-poor phase of disk evolution to reproduce both the location of the observed radius gap and the existence of long-period terrestrial planets. Updating the analytic scaling relations of gas accretion rate accounting for the shrinking of the bound radius by hydrodynamic effects and deriving a more realistic disk temperature profile, we find that the late-stage gas accretion alone is able to carve out the observed radius gap, with slopes R gapP −0.096 and R gap M 0.15 for top-heavy; and R gapP −0.089 and R gap M 0.22 for bottom-heavy core mass distributions, in good agreement with observations. The general morphology of the primordial radius gap is stable against a range of disk gas density and disk accretion rate with the latter affecting mostly the population of large planets (≳3–4 R ). The peaks and valleys in the radius distribution were likely set in place primordially while post-formation mass loss further tunes the exoplanetary population. We provide potential observational tests that may be possible with TESS, PLATO, and Roman Space Telescope.

Funder

McGill University

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3