Modeling Noncondensing Compositional Convection for Applications to Super-Earth and Sub-Neptune Atmospheres

Author:

Habib NamrahORCID,Pierrehumbert Raymond T.ORCID

Abstract

Abstract Compositional convection is atmospheric mixing driven by density variations caused by compositional gradients. Previous studies have suggested that compositional gradients of atmospheric trace species within planetary atmospheres can impact convection and the final atmospheric temperature profile. In this work, we employ 3D convection-resolving simulations using Cloud Model 1 (CM1) to gain a fundamental understanding of how compositional variation influences convection and the final atmospheric state of exoplanet atmospheres. We perform 3D initial value problem simulations of noncondensing compositional convection for Earth-air, H2, and CO2 atmospheres. Conventionally, atmospheric convection is assumed to mix the atmosphere to a final, marginally stable state defined by a unique temperature profile. However, when there is compositional variation within an atmosphere, a continuous family of stable end states is possible, differing in the final state composition profile. Our CM1 simulations are used to determine which of the family of possible compositional end states is selected. Leveraging the results from our CM1 simulations, we develop a dry convective adjustment scheme for use in general circulation models (GCMs). This scheme relies on an energy analysis to determine the final adjusted atmospheric state. Our convection scheme produces results that agree with our CM1 simulations and can easily be implemented in GCMs to improve modeling of compositional convection in exoplanet atmospheres.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Alfred P. Sloan Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3