Plausibility of ultraviolet burst generation in the low solar chromosphere

Author:

Ni Lei,Cheng Guanchong,Lin Jun

Abstract

Context. Ultraviolet (UV) bursts and Ellerman bombs (EBs) are small-scale magnetic reconnection events taking place in the highly stratified, low solar atmosphere. The plasma density, reconnection mechanisms, radiative cooling and transfer processes clearly differ from one layer of the atmosphere to the next. In particular, EBs are believed to form in the upper photosphere or the low chromosphere. It is still not clear whether UV bursts have to be generated at a higher atmospheric layer than the EBs or whether both UV bursts and EBs can occur in the low chromosphere. Aims. We numerically studied the low β magnetic reconnection process around the solar temperature minimum region (TMR) by including more realistic physical diffusions and radiative cooling models. We aim to find out whether UV bursts may occur in the low chromosphere and to investigate the dominant mechanism that accounts for heating in the UV burst in the chromosphere. Methods. We used the single-fluid magnetohydrodynamic (MHD) code NIRVANA to perform the simulations. The time-dependent ionization degrees of hydrogen and helium are included in the code, which lead to a more realistic magnetic diffusion caused by electron-neutral collision and ambipolar diffusion. A more realistic radiative cooling model is also included in the simulations. The initial mass density and temperature are 1.66057 × 10−6 kg m−3 and 4400 K, respectively, values that are typical for the plasma environment around TMR. Results. Our results in high resolution indicate that the plasmas in the reconnection region are heated up to more than 20 000 K if the reconnecting magnetic field is as strong as 500 G, which suggests that UV bursts can be generated in the dense low chromosphere. The dominant mechanism for producing the UV burst in the low chromosphere is heating, as a result of the local compression in the reconnection process. The thermal energy occurring in the reconnection region rapidly increases after the turbulent reconnection mediated by plasmoids is invoked. The average power density of the generated thermal energy in the reconnection region can reach over 1000 erg cm−3 s−1, which is comparable to the average power density accounting for a UV burst. With the strength of the reconnecting magnetic field exceeding 900 G, the width of the synthesized Si IV 1394 Å line profile with multiple peaks can reach up to 100 km s−1, which is consistent with observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3