Extreme-ultraviolet (EUV) observables of simulated plasmoid-mediated reconnection in the solar corona

Author:

Færder Ø. H.ORCID,Nóbrega-Siverio D.ORCID,Carlsson M.ORCID,Martínez-Sykora J.ORCID

Abstract

Context. Understanding the role of magnetic reconnection in the heating and dynamics of the solar atmosphere requires detailed observational data of any observable aspect of the reconnection process, including small-scale features such as plasmoids. Aims. Here, we examine the capability of active and upcoming instruments to detect plasmoids generated by reconnection in the corona including low-density regimes. Methods. We used the Bifrost code to perform simulations of plasmoid-mediated reconnection in the corona with a 2D idealized setup: a fan-spine topology with uniform density including thermal conduction. Through a forward-modeling of extreme-ultraviolet (EUV) observables, we checked whether our simulated plasmoids could be detected with the instruments of Solar Dynamics Observatory (SDO) and Solar Orbiter (SO), as well as the upcoming Multi-Slit Solar Explorer (MUSE) and Solar-C missions. Results. Short-lived (∼10 − 20 s) small-scale (∼0.2 − 0.5 Mm) coronal plasmoids are not resolvable with the Atmospheric Imaging Assembly (AIA) on board SDO. In contrast, they could be captured with the EUV High-Resolution Imager at the Extreme Ultraviolet Imager (EUI-HRIEUV) of SO. The spatial and temporal high-resolution planned for the MUSE spectrograph (SG) is adequate to obtain full spectral information of these plasmoids. To achieve a sufficient signal-to-noise ratio (S/N) for ∼0.8 MK plasmoids in the MUSE/SG 171 Å channel, full-raster images are attainable for regions with electron densities above 109 cm−3, while sit-and-stare observations are recommended for lower-density regions. The future Solar-C mission could also capture these coronal plasmoids using the EUV High-Throughput Spectroscopic Telescope (EUVST), considering rapid changes in Doppler shift and line widths in different EUV lines caused by plasmoid motions along the current sheet. Conclusions. With the combined spectra of MUSE/SG and Solar-C/EUVST in multiple emission lines, along with high-resolution images from SO/EUI-HRIEUV and MUSE/CI, it should be possible to gain new insights about plasmoid formation in the corona.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3