Hard X-rays from the deep solar atmosphere

Author:

Chitta L. P.ORCID,Hannah I. G.ORCID,Fletcher L.ORCID,Hudson H. S.ORCID,Young P. R.ORCID,Krucker S.,Peter H.ORCID

Abstract

Explosive transient events occur throughout the solar atmosphere. The differing manifestations range from coronal mass ejections to Ellermann bombs. The former may have negligible signatures in the lower atmosphere, and the latter may have negligible nonthermal emissions such as hard X-radiation. A solar flare generally involves a broad range of emission signatures. Using a suite of four space-borne telescopes, we report a solar event that combines aspects of simple UV bursts and hard X-ray emitting flares at the same time. The event is a compact C-class flare in active region AR11861, SOL2013-10-12T00:30. By fitting a combined isothermal and nonthermal model to the hard X-ray spectrum, we inferred plasma temperatures in excess of 15 MK and a nonthermal power of about 3 × 1027 erg s−1 in this event. Despite these high temperatures and evidence for nonthermal particles, the flare was mostly confined to the chromosphere. However, the event lacked clear signatures of UV spectral lines, such as the Fe XII 1349 Å and Fe XXI 1354 Å emission lines, which are characteristic of emission from hotter plasma with a temperature over 1 MK. Moreover, the event exhibited very limited signatures in the extreme-UV wavelengths. Our study indicates that a UV burst – hard X-ray flare hybrid phenomenon exists in the low solar atmosphere. Plasma that heats to high temperatures coupled with particle acceleration by magnetic energy that is released directly in the lower atmosphere sheds light on the nature of active region core heating and on inferences of flare signatures.

Funder

HORIZON EUROPE European Research Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3