Oscillations of 2D ESTER models

Author:

Reese D. R.ORCID,Mirouh G. M.ORCID,Espinosa Lara F.,Rieutord M.,Putigny B.

Abstract

Context. Recent numerical and theoretical considerations have shown that low-degree acoustic modes in rapidly rotating stars follow an asymptotic formula. In parallel, recent studies have revealed the presence of regular pulsation frequency patterns in rapidly rotating δ Scuti stars that seem to match theoretical expectations. Aims. In this context, a key question is whether strong gradients or discontinuities can adversely affect the asymptotic frequency pattern to the point of hindering its identification. Other important questions are how rotational splittings are affected by the 2D rotation profiles expected from baroclinic effects and whether it is possible to probe the rotation profile using these splittings. Methods. In order to address these questions, we numerically calculate stellar pulsation modes in continuous and discontinuous rapidly rotating models produced by the 2D Evolution STEllaire en Rotation (ESTER) code. This code self-consistently calculates the rotation profile based on baroclinic effects and uses a spectral multi-domain approach, thus making it possible to introduce discontinuities at the domain interfaces without loss of numerical accuracy. The pulsation calculations are carried out using an adiabatic version of the Two-dimensional Oscillation Program (TOP) code. The variational principle is then used to confirm the high numerical accuracy of the pulsation frequencies and to derive an integral formula for the generalised rotational splittings. Acoustic glitch theory, combined with ray dynamics, is applied to the discontinuous models in order to interpret their pulsation spectra. Results. Our results show that the generalised rotational splittings are very well approximated by the integral formula, except for modes involved in avoided crossings. This potentially allows the application of inverse theory for probing the rotation profile. We also show that glitch theory applied along the island mode orbit can correctly predict the periodicity of the glitch frequency pattern produced by the discontinuity or Γ1 dip related to the He II ionisation zone in some of the models. Furthermore, the asymptotic frequency pattern remains sufficiently well preserved to potentially allow its detection in observed stars.

Funder

Agence Nationale de la Recherche

Programme National de Physique Stellaire

STFC

ISSI

IDRIS

Calmip

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3