Forward modelling and the quest for mode identification in rapidly rotating stars

Author:

Mirouh Giovanni M.

Abstract

Asteroseismology has opened a window on the internal physics of thousands of stars, by relating oscillation spectra properties to the internal physics of stars. Mode identification, namely the process of associating a measured oscillation frequency to the corresponding mode geometry and properties, is the cornerstone of this analysis of seismic spectra. In rapidly rotating stars this identification is a challenging task that remains incomplete, as modes assume complex geometries and regular patterns in frequencies get scrambled under the influence of the Coriolis force and centrifugal flattening. In this article, I will first discuss the various classes of mode geometries that emerge in rapidly rotating stars and the related frequency and period patterns, as predicted by ray dynamics, complete (non-)adiabatic calculations, or using the traditional approximation of rotation. These patterns scale with structural quantities and help us derive crucial constraints on the structure and evolution of these stars. I will summarize the amazing progress accomplished over the last few years for the deciphering of gravity-mode pulsator oscillation spectra, and recent developments based on machine-learning classification techniques to distinguish oscillation modes and pattern analysis strategies that let us access the underlying physics of pressure-mode pulsators. These approaches pave the way to ensemble asteroseismology of classical pulsators. Finally, I will highlight how these recent progress can be combined to improve forward seismic modelling. I will focus on the example of Rasalhague, a well-known rapid rotator, to illustrate the process and the needed advances to obtain à-la-carte modelling of such stars.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference188 articles.

1. Asteroseismology

2. Mode identification of pulsating stars from line profile variations with the moment method. An example : The beta Cephei star delta ceti;Aerts;A&A,1992

3. Forward asteroseismic modeling of stars with a convective core from gravity-mode oscillations: Parameter estimation and stellar model selection;Aerts;Astrophys. J. Suppl. Ser.,2018

4. Asteroseismology of HD 129929: Core overshooting and nonrigid rotation;Aerts;Science,2003

5. Asteroseismology of the β Cep star HD 129929. I. Observations, oscillation frequencies and stellar parameters;Aerts;Astron. Astrophys.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3