Driving white dwarf metal pollution through unstable eccentric periodic orbits

Author:

Antoniadou Kyriaki I.,Veras Dimitri

Abstract

Context. Planetary debris is observed in the atmospheres of over 1000 white dwarfs, and two white dwarfs are now observed to contain orbiting minor planets. Exoasteroids and planetary core fragments achieve orbits close to the white dwarf through scattering with major planets. However, the architectures that allow for this scattering to take place are time-consuming to explore with N-body simulations lasting ∼1010 yr; these long-running simulations restrict the amount of phase space that can be investigated. Aims. Here we use planar and three-dimensional (spatial) elliptic periodic orbits, as well as chaotic indicators through dynamical stability maps, as quick scale-free analytic alternatives to N-body simulations in order to locate and predict instability in white dwarf planetary systems that consist of one major and one minor planet on very long timescales. We then classify the instability according to ejection versus collisional events. Methods. We generalized our previous work by allowing eccentricity and inclination of the periodic orbits to increase, thereby adding more realism but also significantly more degrees of freedom to our architectures. We also carried out a suite of computationally expensive 10 Gyr N-body simulations to provide comparisons with chaotic indicators in a limited region of phase space. Results. We compute dynamical stability maps that are specific to white dwarf planetary systems and that can be used as tools in future studies to quickly estimate pollution prospects and timescales for one-planet architectures. We find that these maps also agree well with the outcomes of our N-body simulations. Conclusions. As observations of metal-polluted white dwarfs mount exponentially, particularly in the era of Gaia, tools such as periodic orbits can help infer dynamical histories for ensembles of systems.

Funder

Science and Technology Facilities Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Residual eccentricity of an Earth-like planet orbiting a red giant Sun;Astronomy & Astrophysics;2023-06

2. Binary asteroid scattering around white dwarfs;Monthly Notices of the Royal Astronomical Society;2023-02-06

3. High-resolution resonant portraits of a single-planet white dwarf system;Monthly Notices of the Royal Astronomical Society;2022-11-12

4. Chaos over order: mapping 3D rotation of triaxial asteroids and minor planets;Monthly Notices of the Royal Astronomical Society;2022-04-18

5. Birth cluster simulations of planetary systems with multiple super-Earths: initial conditions for white dwarf pollution drivers;Monthly Notices of the Royal Astronomical Society;2022-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3