Puzzling out the coexistence of terrestrial planets and giant exoplanets

Author:

Antoniadou Kyriaki I.,Libert Anne-Sophie

Abstract

Aims. Hundreds of giant planets have been discovered so far and the quest of exo-Earths in giant planet systems has become intriguing. In this work, we aim to address the question of the possible long-term coexistence of a terrestrial companion on an orbit interior to a giant planet, and explore the extent of the stability regions for both non-resonant and resonant configurations. Methods. Our study focuses on the restricted three-body problem, where an inner terrestrial planet (massless body) moves under the gravitational attraction of a star and an outer massive planet on a circular or elliptic orbit. Using the detrended fast Lyapunov indicator as a chaotic indicator, we constructed maps of dynamical stability by varying both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial planet, and identify the boundaries of the stability domains. Guided by the computation of families of periodic orbits, the phase space is unravelled by meticulously chosen stable periodic orbits, which buttress the stability domains. Results. We provide all possible stability domains for coplanar symmetric configurations and show that a terrestrial planet, either in mean-motion resonance or not, can coexist with a giant planet, when the latter moves on either a circular or an (even highly) eccentric orbit. New families of symmetric and asymmetric periodic orbits are presented for the 2/1 resonance. It is shown that an inner terrestrial planet can survive long time spans with a giant eccentric outer planet on resonant symmetric orbits, even when both orbits are highly eccentric. For 22 detected single-planet systems consisting of a giant planet with high eccentricity, we discuss the possible existence of a terrestrial planet. This study is particularly suitable for the research of companions among the detected systems with giant planets, and could assist with refining observational data.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3