Residual eccentricity of an Earth-like planet orbiting a red giant Sun

Author:

Lanza A. F.ORCID,Lebreton Y.ORCID,Sallard C.ORCID

Abstract

Context. The late phases of the orbital evolution of an Earth-like planet around a Sun-like star are revisited in order to consider the effect of density fluctuations associated with convective motions inside the star. Aims. Such fluctuations produce a random perturbation of the stellar outer gravitational field that excites a small residual eccentricity in the orbit of the planet. This counteracts the effects of tides, which tend to circularize the orbit. Methods. We computed the power spectrum of the outer gravitational field fluctuations of the star in the quadrupole approximation and studied their effects on the orbit of the planet using a perturbative approach. The residual eccentricity is found to be a stochastic variable showing a Gaussian distribution. Results. Adopting a model of the stellar evolution of our Sun computed with Modules for Experiments in Stellar Astrophysics (MESA), we find that the Earth will be engulfed by the Sun when it is close to the tip of the red giant branch phase of evolution. We find a maximum mean value of the residual eccentricity of ~0.026 immediately before engulfment. Considering an Earth-mass planet with an initial orbital semimajor axis sufficiently large to escape engulfment, we find that the mean value of the residual eccentricity is greater than 0.01 for an initial separation of up to ~l.4 au. Conclusions. The engulfment of the Earth by the red giant Sun is found to be a stochastic process instead of being deterministic as assumed in previous studies. If an Earth-like planet escapes engulfment, its orbit around its remnant white dwarf (WD) star will be moderately eccentric. Such a residual eccentricity of on the order of a few hundredths can play a relevant role in sustaining the pollution of the WD atmosphere by asteroids and comets, as observed in several objects.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution and Delivery of Rocky Extra-Solar Materials to White Dwarfs;Reviews in Mineralogy and Geochemistry;2024-07-01

2. Wobbling Jets in Common Envelope Evolution;The Astrophysical Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3