New predictions for radiation-driven, steady-state mass-loss and wind-momentum from hot, massive stars

Author:

Björklund R.,Sundqvist J. O.,Singh S. M.,Puls J.,Najarro F.

Abstract

Context. Massive stars lose a large fraction of their mass to radiation-driven winds throughout their entire life. These outflows impact both the life and death of these stars and their surroundings. Aims. Theoretical mass-loss rates of hot, massive stars are derived to be used in applications such as stellar evolution. The behaviour of these rates in the OB-star regime is analysed, and their effects on massive-star evolution predictions studied. Methods. Dynamically consistent models are computed by solving the spherically symmetric, steady-state equation-of-motion for a large grid of hot, massive stars with different metallicities. The radiative acceleration is derived from non-local thermodynamic equilibrium radiative transfer in the co-moving frame, and all models cover a large spatial range from deep subsonic atmospheric layers into the radiation-driven and highly supersonic wind outflow. The resulting mass-loss rates are used to derive a simple scaling recipe with stellar parameters (luminosity, mass, effective temperature, and metallicity), and the new recipe is used to evaluate some first impacts upon massive-star evolution tracks. Results. We provide a new prescription for steady-state, radiation-driven mass-loss from hot, massive stars depending on their fundamental parameters. In accordance with our previous work, the rates for O stars are lower a factor of ~3 than the rates typically used in previous stellar-evolution calculations, where differences generally decrease with increasing luminosity and temperature. For cooler B giants/supergiants we find larger discrepancies, of up to one or even two orders of magnitude. This arises because we do not find any systematic increase in mass-loss rates below the so-called bi-stability region; indeed, our results do not show any sign of a significant bi-stability jump within the parameter range covered by the grid (Teff ≥ 15 kK). Due to the lower mass-loss rates we find that massive-star envelopes are not easily stripped by means of standard steady-state winds, making it difficult to create classical Wolf-Rayet stars via this channel. Moreover, since the stars retain more mass right before they die as supernovae, our new rates make it possible to create black holes of higher masses than in previous models, even at Galactic metallicity. However, a remaining key uncertainty regarding these predictions concerns unsteady mass-loss for very high-luminosity stars close to the Eddington limit as well as the impact of non-line-driven winds.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3