Impact of main sequence mass loss on the appearance, structure, and evolution of Wolf-Rayet stars

Author:

Josiek J.ORCID,Ekström S.ORCID,Sander A. A. C.ORCID

Abstract

Context. Stellar winds are one of the most important drivers of massive star evolution and are a vital source of chemical, mechanical, and radiative feedback on the galactic scale. Despite its significance, mass loss remains a major uncertainty in stellar evolution models. In particular, the interdependencies between the different approaches and the subsequent evolutionary stages and predicted observable phenomena are far from being systematically understood. Aims. In this study, we examine the impact of main sequence mass loss on the structure of massive stars throughout their entire evolution. Particular focus is placed on the consequences in terms of entrance into the Wolf-Rayet (WR) regime and the subsequent evolution. Methods. Using the Geneva stellar evolution code (GENEC), we computed grids of single, nonrotating stellar models at solar and Large Magellanic Cloud (LMC) metallicities of initial masses between 20 and 120 solar masses, with two representative prescriptions for high and low main sequence mass loss. Results. We obtain detailed numerical predictions regarding the structure and evolution of massive stars, and infer the role of main sequence mass loss by comparison of the mass-loss rate prescriptions. We present implications for the overall evolutionary trajectory, including the evolution of WR stars, as well as the effect on stellar yields and stellar populations. Conclusions. Mass loss during the main sequence plays an important role because of its ability to affect the sequence and duration of all subsequent phases. We identify several distinct evolutionary paths for massive stars, which are significantly influenced by the chosen main sequence mass-loss description. We also discuss the impact of uncertainties – other than that regarding mass loss – on the evolution, in particular those relating to convection. We further demonstrate that not only the total mass loss but also the specific mass-loss history throughout a star’s life is a crucial determinant of many aspects, such as the resulting stellar yields.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3