Research on dynamic path planning algorithm of spacecraft cluster based on cooperative particle swarm algorithm

Author:

Zhang Zhen,Fang Qun,Song Jinfeng,Zhang Xiuwei,Zhu Zhanxia

Abstract

In order to solve the problem of path planning for the spacecraft cluster to reach the dynamic target point under the premise of considering obstacle avoidance. In view of the fixed search radius, it will be difficult for the spacecraft to find a better value when it is close to the target point. This paper converts the orbital dynamics of each member spacecraft into an optimization problem considering constraints, and proposes an improved CPSO algorithm based on coordination. The path planning method of the traditional particle swarm optimization (CPSO): The dynamic radius search method that changes the search radius by changing the distance between them, and improves the CPSO algorithm based on this. The improved CPSO algorithm autonomously finds the optimal path of each member spacecraft at the current moment through the dynamic search radius, thereby obtaining the optimal solution for the dynamic path planning of the spacecraft cluster in three-dimensional space. The simulation results show that the use of the improved CPSO algorithm can not only obtain the optimal solution to the spacecraft cluster dynamic path planning problem, but also greatly reduce the fuel consumption in its path planning and improve the path stability of each member spacecraft.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3