Randomized Kinodynamic Planning

Author:

LaValle Steven M.1,Kuffner James J.2

Affiliation:

1. Department of Computer Science, Iowa State University, Ames, IA 50011

2. Department of Mechano-Informatics, University of Tokyo, Bunkyo-ku, Tokyo, Japan

Abstract

This paper presents the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design). The task is to determine control inputs to drive a robot from an ini ial configuration and velocity to a goal configuration and velocity while obeying physically based dynamical models and avoiding obstacles in the robot’s environment. The authors consider generic systems that express the nonlinear dynamics of a robot in terms of the robot’s high-dimensional configuration space. Kinodynamic planning is treated as a motion-planning problem in a higher dimensional state space that has both first-order differential constraints and obstacle-based global constraints. The state space serves the same role as the configuration space for basic path planning; however, standard randomized path-planning techniques do not directly apply to planning trajectories in the state space. The authors have developed a randomized planning approach that is particularly tailored to trajectory planning problems in high-dimensional state spaces. The basis for this approach is the construction of rapidly exploring random trees, which offer benefits that are similar to those obtained by successful randomized holonomic planning methods but apply to a much broader class of problems. Theoretical analysis of the algorithm is given. Experimental results are presented for an implementation that computes trajectories for hovercrafts and satellites in cluttered environments, resulting in state spaces of up to 12 dimensions.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 1535 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3