Global path guided vehicle obstacle avoidance path planning with artificial potential field method

Author:

Chen Yangde1ORCID,Wang Peiliang1,Lin Zichen1ORCID,Sun Chenhao1ORCID

Affiliation:

1. School of Engineering Huzhou University Huzhou Zhejiang China

Abstract

AbstractAn artificial potential field method based on global path guidance (G‐APF) is proposed for target unreachability and local minima problems of the conventional artificial potential field (APF) method in complex environments with dynamic obstacles. First, for the target unreachability problem, the global path attraction is added to the APF; second, an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem; finally, based on the obstacle detection optimisation method, the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision‐free. Experiments show that the method optimises 40.8% of the total path corners, reduces 81.8% of the number of path oscillations, and shortens 4.3% of the path length in Map 1. It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction,Information Systems

Reference43 articles.

1. Intelligent vehicle path tracking control based on fault‐tolerant learning;Li H.B.;Control Eng.,2022

2. Fuzzy artificial potential field method for mobile robot path planning;Liu H.P.;Control Eng.,2022

3. Path planning based on fusion Bezier optimization genetic algorithm;Liu Y.;Control Eng.,2013

4. Current situation and prospect of intelligent mobile robot technology;Xu G.B.;Robot. Technol. Appl.,2007

5. Improvement and verification of A‐star algorithm for AGV path planning;Zhao J.;Comput. Eng. Appl.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Proximal Policy Optimization method in UAV swarm formation control;Alexandria Engineering Journal;2024-08

2. Autonomous Motion Planning for a Motorized Walker Using Potential Field and Admittance Control;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3