An Obstacle Avoidance Algorithm for Manipulators Based on Six-Order Polynomial Trajectory Planning

Author:

Ma Yuhao,Liang Yanbing

Abstract

Aiming at a series of requirements of obstacle avoidance trajectory planning of manipulators, a new algorithm based on six-order polynomial trajectory planning is proposed. Firstly, the six-order polynomial is used for the trajectory planning of the manipulator. Assuming that the coefficients of the sixth order term in the curve equation are undetermined parameters, by adjusting these parameters, the shape of the curve can be changed to make manipulators avoid the obstacle and to optimize performance indicators of the trajectory simultaneously. Thus, the obstacle avoidance trajectory planning of manipulators is transformed into a multi-objective optimization problem. Secondly, combining collision detection results and kinematics indexes, a fitness function is defined by the weighting coefficient method. At last, an ideal collision-free trajectory that is collaborative optimized in kinematics, trajectory length and rotation angle is planned in the joint space through genetic algorithm optimization. Additionally, the algorithm is validated by simulation experiments with MATLAB, the results show that the method of this study can effectively plan obstacle-free trajectories satisfying the performance requirements of the manipulator.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Multi-Objective Optimization of Grinding Robots Based on Multi-Verse Optimizer;2024 8th International Conference on Robotics and Automation Sciences (ICRAS);2024-06-21

2. A trajectory tracking algorithm of generalized predictive control manipulator based on feedback linearization;Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University;2024-04

3. Research on system integration and control methods of an apple-picking robot in unstructured environment;Industrial Robot: the international journal of robotics research and application;2024-01-22

4. Application of Robotic Arm Path Planning Based on TQC Algorithm;2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2023-12-15

5. Research on obstacle avoidance motion planning method of manipulator in complex multi scene;Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3