Particle Track Reconstruction with Quantum Algorithms

Author:

Tüysüz Cenk,Carminati Federico,Demirköz Bilge,Dobos Daniel,Fracas Fabio,Novotny Kristiane,Potamianos Karolos,Vallecorsa Sofia,Vlimant Jean-Roch

Abstract

Accurate determination of particle track reconstruction parameters will be a major challenge for the High Luminosity Large Hadron Collider (HL-LHC) experiments. The expected increase in the number of simultaneous collisions at the HL-LHC and the resulting high detector occupancy will make track reconstruction algorithms extremely demanding in terms of time and computing resources. The increase in number of hits will increase the complexity of track reconstruction algorithms. In addition, the ambiguity in assigning hits to particle tracks will be increased due to the finite resolution of the detector and the physical “closeness” of the hits. Thus, the reconstruction of charged particle tracks will be a major challenge to the correct interpretation of the HL-LHC data. Most methods currently in use are based on Kalman filters which are shown to be robust and to provide good physics performance. However, they are expected to scale worse than quadratically. Designing an algorithm capable of reducing the combinatorial background at the hit level, would provide a much “cleaner” initial seed to the Kalman filter, strongly reducing the total processing time. One of the salient features of Quantum Computers is the ability to evaluate a very large number of states simultaneously, making them an ideal instrument for searches in a large parameter space. In fact, different R&D initiatives are exploring how Quantum Tracking Algorithms could leverage such capabilities. In this paper, we present our work on the implementation of a quantum-based track finding algorithm aimed at reducing combinatorial background during the initial seeding stage. We use the publicly available dataset designed for the kaggle TrackML challenge.

Publisher

EDP Sciences

Reference17 articles.

1. Arute F., Arya K., Babbush R., Bacon D., Bardin J.C., Barends R., Biswas R., Boixo S., Brandao F.G.S.L., Buell D.A. et al., Nature 574 (2019), arXiv:1910.11333

2. Apollinari G., Bruening O., Nakamoto T., Rossi L., High luminosity large hadron collider hl-lhc (2017), arXiv:1705.08830

3. Farrell S., Calafiura P., Mudigonda M., Prabhat , Anderson D., Vlimant J.R., Zheng S., Bendavid J., Spiropulu M., Cerati G. et al. (2018), arXiv:1810.06111

4. Shapoval I., Calafiura P. (2019), arXiv:1902.00498

5. Bapst F., Bhimji W., Calafiura P., Gray H., Lavrijsen W., Linder L. (2019), arXiv:1902.08324

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3