Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning

Author:

García‐Ramos José‐Enrique12ORCID,Sáiz Álvaro3ORCID,Arias José M.4ORCID,Lamata Lucas4ORCID,Pérez‐Fernández Pedro3ORCID

Affiliation:

1. Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemática y Computación Universidad de Huelva 21071 Huelva Spain

2. Instituto Carlos I de Física Teórica y Computacional Universidad de Granada Fuentenueva s/n 18071 Granada Spain

3. Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería, Universidad de Sevilla E‐41092 Sevilla Spain

4. Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física Universidad de Sevilla Apartado 1065 E‐41080 Sevilla Spain

Abstract

AbstractIn this paper, the application of quantum simulations and quantum machine learning is explored to solve problems in low‐energy nuclear physics. The use of quantum computing to address nuclear physics problems is still in its infancy, and particularly, the application of quantum machine learning (QML) in the realm of low‐energy nuclear physics is almost nonexistent. Three specific examples are presented where the utilization of quantum computing and QML provides, or can potentially provide in the future, a computational advantage: i) determining the phase/shape in schematic nuclear models, ii) calculating the ground state energy of a nuclear shell model‐type Hamiltonian, and iii) identifying particles or determining trajectories in nuclear physics experiments.

Funder

Ministerio de Ciencia e Innovación

Publisher

Wiley

Reference89 articles.

1. Quantum Computation and Quantum Information

2. D.Beck J.Carlson Z.Davoudi J.Formaggio S.Quaglioni M.Savage J.Barata T.Bhattacharya M.Bishof I.Cloet A.Delgado M.DeMarco C.Fink A.Florio M.Francois D.Grabowska S.Hoogerheide M.Huang K.Ikeda M.Illa K.Joo D.Kharzeev K.Kowalski W. K.Lai K.Leach B.Loer I.Low J.Martin D.Moore T.Mehen et al. Quantum Information Science and Technology for Nuclear Physics. Input into U.S. Long‐Range Planning 2023 2023 https://doi.org/10.48550/arXiv.2303.00113.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3