Research on obstacle climbing gait structure design and gait control of hexapod wall climbing robot based on STM32F103 core controller

Author:

Hongfan GuiORCID,Zhangyan Zhao

Abstract

The hexapod wall climbing robots have the advantages of traversing complex wall surfaces. To traverse complex environments autonomously, it must possess the capability to select gait parameters and paths appropriate for the wall surface. Path planning and gait optimization is a fundamental issue in the aspect of stable, energy efficient robot navigation in complex environments with static and dynamic obstacles. Traditional statistical models have been developed to get the optimal path and gait parameters but the result obtained was very poor. Metaheuristic algorithms are gaining importance in robotic gait planning. In this paper, we proposed robust two stage gait planning approach for predicting collision-free, distance-minimal, smooth navigation path and ensuring stable, energy efficient gait patterns for robots using hybrid metaheuristic algorithms. In the first stage, optimal climbing path for robot is predicted using Tri-objective Grey Wolf Path Optimization (TGWPO) based on obstacle and target detection. In the second stage, the gait parameters adaptive to the constructed climbing path are optimized using Adaptive multi-objective Particle swarm optimization (AMPSO). The hexapod wall climbing robot is designed with STM32F103 as core controller modeled with optimal path planner (using TDWPO) and gait optimizer module (using AMPSO). STM32F103 controller commands and controls the robot to climb on wall with optimized gait parameters according to the optimal path. We analyzed the efficacy of the proposed two stage gait planning approach using TDWPO-AMPSO for hexapod wall climbing robots with existing gait planning approaches in terms of path length, climbing time, gait stability, obstacle avoidance, and energy efficiency. The result analysis showed that the suggested gait planning approach is efficient over conventional strategies for climbing robots.

Funder

This work was supported by the Guiding project of scientific research plan of Hubei Provincial Department of Education under Grant

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3