Optimization on kinematic characteristics and lightweight of a camellia fruit picking machine based on the Kriging surrogate model

Author:

Kang Di,Chen Ze Jun,Fan You Hua,Li Cheng,Mi ChengjiORCID,Tang Ying Hong

Abstract

In order to achieve fully automated picking of camellia fruit and overcome the technical difficulties of current picking machinery such as inefficient service and manual auxiliary picking, a novel multi-links-based picking machine was proposed in this paper. The working principle and process of this device was analyzed. The mechanism kinematics equation was given, and the velocity executive body was obtained, as well as the acceleration. The acceleration at pivotal positions was tested in the camellia fruit forest, and the simulated results agreed well with the experimental ones. Then, the maximum acceleration of executive body and weight was considered as the optimization objective, and the rotating speed of crank, the radius and thickness of crank and the length and radius of link rod were regarded as the design variable. Based on the Kriging surrogate model, the relationship between variables and optimization objectives was built, and their interrelations were analyzed. Finally, the optimal solution was acquired by the non-dominated sorting genetic algorithm II, which resulted in the reduction of the maximum acceleration of executive body by 31.30%, as well as decrease of weight by 27.51%.

Funder

Science and Technology Innovation Project of Hunan Province

Forestry Science and Technology Promotion Demon-stration Project of Central Finance

Forestry Science and Technology Innovation Project of Hunan Province

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3