A Distance Measurement Approach for Large Fruit Picking with Single Camera

Author:

Liu Jie12,Zhou Dianzhuo1,Wang Yifan1,Li Yan1,Li Weiqi1

Affiliation:

1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

2. Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China

Abstract

Target ranging is the premise for manipulators to complete agronomic operations such as picking and field management; however, complex environmental backgrounds and changing crop shapes increase the difficulty of obtaining target distance information based on binocular vision or depth cameras. In this work, a method for ranging large-sized fruit based on monocular vision was proposed to provide a low-cost and low-computation alternative solution for the fruit thinning or picking robot. The regression relationships between the changes in the number of pixels occupied by the target area and the changes in the imaging distance were calculated based on the images of square-shaped checkerboards and circular-shaped checkerboards with 100 cm2, 121 cm2, 144 cm2, 169 cm2, 196 cm2, 225 cm2, 256 cm2, 289 cm2, and 324 cm2 as the area, respectively. The 918 checkerboard images were collected by the camera within the range from 0.25 m to 1.5 m, with 0.025 m as the length of each moving step, and analyzed in MATLAB to establish the ranging models. A total of 2448 images of four oval watermelons, four pyriform pomelos, and four oblate pomelos, as the representatives of large fruit with different shapes, were used to evaluate and optimize the performance of the models. The images of the front were the input, while the imaging distances were the output. The results showed that the absolute error would be less than 0.06 m for both models and would linearly increase with a decrease in the distance. The relative error could be controlled at 5%. The results proved the proposed monocular method could be a solution for the ranging of large fruit targets.

Funder

Fundamental Research Funds for the Central University

China Agriculture (Citrus) Research System

College of Engineering in the HZAU 2018 Subject Construction

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3