Estimation of Vehicle Side-Slip Angle Using an Artificial Neural Network

Author:

Chindamo Daniel,Gadola Marco

Abstract

In this work, a reliable and effective method to predict the vehicle side-slip angle is given by means of an artificial neural network. It is well known that artificial neural networks are a very powerful modelling tool. They are largely used in many engineering fields to model complex and strongly non-linear systems. For this application, the network has to be as simple as possible in order to work in real-time within built-in applications such as active safety systems. The network has been trained with the data coming from a custom manoeuvre designed in order to keep the method simple and light from the computational point of view. Therefore, a 5-10-1 (input-hidden-output layer) network layout has been used. These aspects allow the network to give a proper estimation despite its simplicity. The proposed methodology has been tested by means of the CarSim® simulation package, which is considered one of the reference tools in the field of vehicle dynamics simulation. To prove the effectiveness of the method, tests have been carried out under different adherence conditions.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3