Sideslip Angle Estimation for Distributed Drive Electric Vehicles Based on Robust Unscented Particle Filter

Author:

Hu Jie1234,Rong Feiyue123,Zhang Pei123ORCID,Yan Fuwu123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China

4. Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China

Abstract

An accurate and reliable sideslip angle is crucial for active safety control systems and advanced driver-assistance systems (ADAS). The direct measurement method of the sideslip angle suffers from challenges of high costs and environmental sensitivity, so sideslip angle estimation has always been a significant research issue. To improve the precision and robustness of sideslip angle estimation for distributed drive electric vehicles (DDEV) in extreme maneuvering scenarios, this paper presents a novel robust unscented particle filter (RUPF) algorithm based on low-cost onboard sensors. Firstly, a nonlinear dynamics model of DDEV is constructed, providing a theoretical foundation for the design of the RUPF algorithm. Then, the RUPF algorithm, which incorporates the unscented Kalman filter (UKF) to update importance density and utilizes systematic random resampling to mitigate particle degradation, is designed for estimation. Eventually, the availability of the proposed RUPF algorithm is validated on the co-simulation platform with non-Gaussian noises. Simulation results demonstrate that RUPF algorithm attains a higher precision and stronger robustness compared with the traditional PF and UKF algorithms.

Funder

Key R & D project of Hubei Province

Independent Innovation Projects of the Hubei Longzhong Laboratory

Guangxi Science and Technology Major Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3