Affiliation:
1. Université Paris-Saclay
Abstract
Diamond and Silicon Carbide (SiC) are promising wide band-gap semiconductors for power electronics, SiC being more mature especially in term of large wafer size (200 mm). Nitrogen impurities are often used in both materials for different purpose: increase the diamond growth rate or induce n-type conductivity in SiC. The determination of the nitrogen content by secondary ion mass spectrometry (SIMS) is a difficult task mainly because nitrogen is an atmospheric element for which direct monitoring of N± ions give no or a weak signal. With our standard diamond SIMS conditions, we investigate 12C14N- secondary ions under cesium primary ions by applying high mass resolution settings. Nitrogen depth-profiling of diamond and SiC (multi-) layers is then possible over several micrometer thick over reasonable time analysis duration. In a simple way and without notably modifying our usual analysis process, we found a nitrogen detection limit of 2x1017 at/cm3 in diamond and 5x1015 at/cm3 in SiC.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献