A Novel Approach of Utilizing Mechanically Flexible SiC Substrate to Grow Crack-Free AlN Bulk Crystal by Thermal Strain Relaxation Functionality

Author:

Dojima Daichi1,Matsubara Moeko2,Minamiyama Hideaki2,Kaneko Tadaaki1

Affiliation:

1. Kwansei Gakuin University (KGU)

2. Toyo Aluminium K.K.

Abstract

The fabrication of novel semiconductor seed crystals using hetero-epitaxial growth on substrates such as Si, sapphire, and SiC, which have been successfully grown to large diameter and high quality, is very attractive as a breakthrough technology. However, a critical issue in heteroepitaxial growth is the formation of cracks due to thermal stress caused by the difference in the thermal expansion coefficient between the substrate and the growth layer during the cooling process after growth. In this study, we propose a method to reduce thermal stress by using a "Flexible substrate," which is a substrate with mechanical flexibility enhanced by removing more than 80% of its volume with periodic through holes. Using this method, we obtained an AlN hetero-epitaxial growth layer with absolutely no cracks observed. This method is applicable not only for AlN on SiC but also for the fabrication of various new semiconductor materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3