Thick Epilayer for Power Devices

Author:

Henry Anne1,ul Hassan Jawad1,Pedersen Henrik1ORCID,Beyer Franziska Christine1,Bergman Peder1,Andersson Sven1,Janzén Erik1,Godignon Phillippe2

Affiliation:

1. Linköping University

2. IMB-CNM, CSIC

Abstract

Growth of thick epitaxial SiC layers needed for high power devices is presented for horizontal hot-wall CVD (HWCVD) reactors. We demonstrate thickness of epilayer of 100 μm and more with good morphology, low-doping with no doping variation through the whole thick layer and reasonable carrier lifetime which mainly depends on the substrate quality. Typical epidefects are described and their density can dramatically be reduced when choosing correctly the growth conditions as well as the polishing of the surface prior to the growth. The control of the doping and thickness uniformities as well as the run-to-run reproducibility is also presented. Various characterization techniques such as optical microscopy, AFM, reflectance, CV, PL and minority carrier lifetime have been used. Results of high-voltage SiC Schottky power devices are presented.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3