A Deformable Linear Dielectric Elastomer Actuator

Author:

Wiranata Ardi1,Maeda Shingo2

Affiliation:

1. University of Gadjah Mada

2. Shibaura Institute of Technology

Abstract

Dielectric elastomer actuator (DEA) is a compact device that consists of stretchable electrodes and elastomers. This device is energy efficient in performance and holds great promise in the development of soft actuators. DEAs performance relies significantly on the mechanical properties of its elastomers. This present study focuses on evaluating the soft material made of Sylgard 184 as the elastomers for DEAs. Sylgard 184 is a silicone elastomer that comes with two main parts (elastomers and its curing agent). A specific mixing ratio between elastomers and curing agent is essential to produce solid and reliable silicone elastomer. The recommended ratio for the elastomer solution was ten parts for the elastomers and one part for the curing agent (10:1). Producing softer elastomers was possible by reducing the curing agent. However, the performance of the material was unknown. We performed a series of cyclic tensile tests to understand the mechanical characteristic of the elastomer made of Sylgard 184. The result shows that reducing the curing agent did not have a significant effect on its cyclic performance. Furthermore, the use of a 30:1 ratio in the application of DEAs and deformable linear actuator indicates stable performance for both devices.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crawling Soft Actuator Based on Laser Induced Graphene;2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS);2024-01-21

2. Dielectric elastomer actuators: materials and design;Успехи химии;2023-02

3. Reservoir Computing Model for Human Hand Locomotion Signal Classification;IEEE Access;2023

4. Electromechanical tensile test equipment for stretchable conductive materials;HardwareX;2022-04

5. Eccentric actuator driven by stacked electrohydrodynamic pumps;Journal of Zhejiang University-SCIENCE A;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3