Investigation of Grain Boundary Diffusion in Thin Films by SNMS Technique

Author:

Beke Dezső L.1,Lakatos A.1,Erdélyi G.1,Makovecz A.1,Langer G.A.1,Daróczi Lajos1,Vad K.2,Csik A.2

Affiliation:

1. University of Debrecen

2. Hungarian Academy of Sciences (ATOMKI)

Abstract

It was shown more recently in our Laboratory [1,2,3] that having a substrate/diffusant/thin-film/cap-layer structure (the thin film was typically several 10 nm thick, with the same order of magnitude of grain size; the refractory metal cap layer was used just to avoid the oxidation), first the diffusant atoms migrated very fast across the thin film and segregated at the film/cap-layer interface. The accumulated atoms at the film/cap layer interface form a secondary diffusion reservoir and atoms diffuse back to the layer. Later on, the thin film was gradually filled up with the diffusing atoms and composition depth profiles, determined by Secondary Neutral Mass Spectroscopy (SNMS), showed a maximum at the cap layer-thin film interface. The accumulated atoms at this interface formed a secondary diffusion reservoir and atoms diffused back to the layer. These observations can be interpreted supposing a bimodal grain boundary structure with different (fast and low) diffusivities. The observed grain boundary diffusion phenomena can be classified as C-type diffusion. The appearance of the peak observed at the cap layer interface can be used as a tool to determine the grain boundary diffusivity along the fast boundaries. Because the fast boundaries were saturated in the first stage of the process, this back-diffusion took place along the low-diffusivity boundaries only. Thus the SNMS depth-profiling is a good method to determine grain boundary diffusivities in a bimodal structure. In addition, from the overall impurity content inside the film the segregation can also be estimated, if the bulk solubility is low and the GB density is known. Numerical simulations of C-type GB diffusion in thin films with a bimodal structure confirmed that the interpretation of the result depicted above is reasonable [4]. In order to estimate roughly the GB diffusion data we determined the fast diffusivity using the first appearance method. The lower diffusivity was determined from the time evolution of the broadening of the diffusant/thin film interface. In addition both (slow and fast) diffusivities were also estimated from fitting numerical solutions obtained in [4] too.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3