Anomalous Kinetics and Regimes of Growth of Intermetallic Phases during Solid State Reactions in Nanosystems

Author:

Beke D.L.1,Erdélyi Zoltán1,Katona G.L.1

Affiliation:

1. University of Debrecen

Abstract

Two interesting features of formation and growth of intermetallic phases in nanoscale solid state reactions will be discussed:Linear-parabolic “normal” growth: it will be summarized that at the very early stages of the growth of an already existing new phase (i.e. when nucleation problems can be neglected) the linear kinetics can be observed due to the so-called diffusion asymmetry. Indeed, it was shown that if the ratio of the diffusion coefficients differ by orders of magnitude in the parent materials (and so also in the new phase), during the growth of a phase bordered by parallel interfaces from the parent phases (normal growth geometry), the shift of the individual interfaces can be linear at the beginning and a transition to the parabolic regime can take place even after a shift of several tens of nanometres. In addition, an AB compound in contact with the pure A and B phases can be dissolved if the diffusion in B is much faster than in either A and AB. This means that the thickness of this phase should decrease, or even can be fully dissolved, at the beginning and only after some time—when the composition in B will be high enough allowing the re-nucleation of this AB phase—will the AB phase grow further.The common problem oftwo stages of solid state reactionswill be revisited: usually the growth can be divided into two stages: a) the formation (nucleation) and lateral growth of the new phases and b) the “normal” growth of the already continuous phase. It was concluded in different previous reviews that in stage b) in the majority of cases the parabolic growth was observed in accordance with the above i) point: the linear-parabolic transition length was typically below 1 μm, which was the lower limit of detection in many previous investigations. On the other hand recently the application of the linear-parabolic growth law for the analysis of experimental data obtained in nanoscale reactions became very popular, not making a clear distinction between a) and b) stages. It will be emphasized here that care should be taken in all cases when the experimental methods applied provide information only about the increase of the amount of the reaction product and there is no informationwhere and howthe new phase (s) grow. We have illustrated in a series of low temperature experiments - where the bulk diffusion processes are frozen - that even in this case a full homogeneous phase can be formed by cold homogenization called Grain Boundary Diffusion Induced Solid State Reaction (GBDIREAC). In this case first the reaction starts by grain-boundary (GB) diffusion and nucleation of the new phase at GBs or their triple junctions, then the growth of the new phase happens by the shift of the new interfaces perpendicular to the original GB. This is a process similar to the diffusion induced grain-boundary motion (DIGM) or diffusion induced recrystallization (DIR) phenomena and in this case the interface shift, at least in the first stage of the reaction until the parent phases have been consumed, can be considered constant. This means that the amount of the phase increases linearly with time, giving a plausible explanation for the linear kinetics frequently observed in stage a).

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

Reference107 articles.

1. J. Philibert, Reactive interdiffusion: Mater. Sci. Forum, Vol. 155-156 (1994) 15-30.

2. F. d'Heurle, P. Gas, J. Philibert, and O. Thomas, Considerations Regarding Reactive Diffusion: Parabolic and Linear Rates, Metals Materials and Processes 11, (1999) 217- 232.

3. B. E. Deal and A. Groves, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36, (1965) 3770-3778.

4. F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, App. Phys. Lett. 86, (2005) 041903/1-3.

5. Ya. Ye. Geguzin, Yu. S. Kaganovskiy, L. M. Paritskaya, V. I. Solunskiy, Kinetics of the motion of the interface during mutual diffusion in a two-component system, Phys. Met. Metallogr. 47, (1980) 127-132.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3