Comparison of Inversion Layer Electron Transport of Lightly Doped 4H and 6H SiC MOSFETs

Author:

Tilak Vinayak1,Matocha Kevin1,Dunne Greg2

Affiliation:

1. General Electric Global Research

2. General Electric Global Research Center

Abstract

nversion layers of 4H and 6H Silicon carbide based MOS devices are characterized by Gated Hall measurements to determine the trap density close to the conduction band edge and the main scattering mechanisms that limit the mobility. MOS gated Hall structures were fabricated on 4H SiC polytype with p-type doping of 5X1015cm-3 and 2X1017cm-3. MOS Gated Hall structures were also fabricated on 6H SiC polytype with p-type doping of 7.5X1015cm-3. The gate oxide was grown thermally with N2O as a precursor followed by a NO post oxidation anneal. The inversion layer Hall mobility on the 6H SiC MOSFET sample decreased with increasing temperature from room temperature to 423K, while on the 4H SiC MOSFET samples the inversion layer mobility increased slowly. Approximately 50% of the total charge density at the interface of both 6H and 4H SiC MOSFETs was found to be trapped charge. The dominant scattering mechanism in 6H SiC MOSFETs was inferred to be phonon scattering based on the temperature dependence and theoretical estimates of the phonon limited mobility. In the case of 4H SiC, we infer that at surface roughness scattering is the dominant scattering mechanisms at high surface fields.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3