Affiliation:
1. Epitaxial Technology Center
2. University of South Florida
3. Istituto per la Microelettronica e Microsistemi IMM-CNR
Abstract
SiC is a candidate material for micro- and nano-electromechanical systems (MEMS and NEMS). In order to understand the impact that the growth rate has on the residual stress of CVD-grown 3C-SiC hetero-epitaxial films on Si substrates, growth experiments were performed and the resulting stress was evaluated. Film growth was performed using a two-step growth process with propane and silane as the C and Si precursors in hydrogen carrier gas. The film thickness was held constant at ~2.5 µm independent of the growth rate so as to allow for direct films comparison as a function of the growth rate. Supported by profilometry, Raman and XRD analysis, this study shows that the growth rate is a fundamental parameter for low-defect and low-stress hetero-epitaxial growth process of 3C-SiC on Si substrates. XRD (rocking curve analysis) and Raman spectroscopy show that the crystal quality of the films increases with decreasing growth rate. From curvature measurements, the average residual stress within the layer using the modified Stoney’s equation was calculated. The results show that the films are under compressive stress and the calculated residual stress also increases with growth rate, from -0.78 GPa to -1.11 GPa for 3C-SiC films grown at 2.45 and 4 µm/h, respectively.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献