Abstract
Passivation treatments applied prior to Mo metallisation on Silicon Carbide (SiC) Schottky rectifier and metal-oxide-semiconductor capacitor (MOSCAP) structures are studied. A control sample and two treatments, comprising of an O2 oxidation and a phosphorus pentoxide (P2O5) deposition, were studied. Electrical characterisation results show that P2O5 treatment improves the homogeneity of the diodes, with the ideality factor reducing to 1.02 and the leakage current reducing by three orders of magnitude to 2×10-5 A/cm2. Furthermore, the SBH was lowered by 0.11 eV and the variance of all the P2O5 treated Schottky characteristics over the batch reduced. Characterisation by X-ray photoelectron spectroscopy (XPS) showed that the stoichiometry, the Si:C ratio, of the SiC below the contact increased from 0.93:1 before treatment to 0.97:1 after P2O5 treatment.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mo/4H-SiC Schottky diodes for room temperature X-ray and γ-ray spectroscopy;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-03
2. The Optimization of 3.3 kV 4H-SiC JBS Diodes;IEEE Transactions on Electron Devices;2022-01
3. The improvement of Mo/4H-SiC Schottky diodes via a P2O5 surface passivation treatment;Journal of Applied Physics;2020-01-14