Characterization of Near-Interface Traps at Dielectric/SiC Interfaces Using CCDLTS

Author:

Jayawardhena Isanka1,Jayawardena Asanka1,Jiao Chun Kun2,Morisette Dallas2ORCID,Dhar Sarit1

Affiliation:

1. Auburn University

2. Purdue University

Abstract

Charge trapping at 4H-SiC/dielectric interfaces in 4H-SiC MOS capacitors has been investigated using constant capacitance deep level transient spectroscopy (CCDLTS). The experiments were focused on further understanding of the following aspects related to 4H-SiC/SiO2 interfaces: (i) Origin of near interface oxide traps (NITs), (ii) Effect of interfacial impurity/passivation methods and (iii) Characterization of near-interface oxide traps for different SiC wafer orientations. For the (0001) Si-face 4H-SiC/ SiO2 interface, two types of NITs are typically detected by CCDLTS, named ‘O1’ and ‘O2’ traps with emission activation energies of about 0.15±0.05 eV and 0.39±0.1 eV respectively below the 4H-SiC conduction band. Based on comparison with previous ab initio calculations, the physical identities of these defects have been suggested to be carbon dimers substituted for O dimers (‘O1’) and interstitial silicon atoms (‘O2’) in the near interfacial SiO2 respectively. In this work, it is shown for the first time that such traps are not observed for 4H-SiC/ Al2O3 interfaces, proving that these traps are inherent to the near-interfacial SiO2. In addition, the summary of CCDLTS results for Si-face with different interface trap passivation methods are included in this study. Finally, a comparison is presented for NO annealed (0001) Si-face, (11-20) a-face and (000-1) C-face interfaces that highlight the difference of CCDLTS signatures for the different crystal faces.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3