Affiliation:
1. U.S. Army Research Laboratory
Abstract
Since power devices such as DMOSFETs will operate at higher temperatures with accelerated degradation mechanisms, it is essential to understand the effects of typical operating conditions for power electronics applications. We have found that SiC MOSFETs when gate-biased at 150 °C show an increasing charge pumping current over time, suggesting that interface traps (or perhaps near-interface oxide traps) are being created under these conditions. This trapping increase occurs slightly above linear-with-log-time and mimics previously observed threshold voltage instabilities, though a causal relationship has not yet been determined. We found the charge trapping after 104 s of BTS increased at a rate of 1x1011 cm-2/dec for NBTS (-3 MV/cm), 0.7x1011 cm-2/dec for PBTS (3 MV/cm), and 0.3x1011 cm-2/dec when grounded. The observed increase in charge trapping has negative implications for the long term stability and reliability of SiC MOS devices under operating conditions.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献