Evidence of Electrochemical Graphene Functionalization by Raman Spectroscopy

Author:

Daniels Kevin M.1,Daas Biplob K.1,Srivastava Nishtha2,Williams Christopher1,Feenstra Randall M.2,Sudarshan Tangali S.1,Chandrashekhar M.V.S.1

Affiliation:

1. University of South Carolina

2. Carnegie Mellon University

Abstract

Electrochemical functionalization of treated epitaxial graphene samples on Si-face 6H-SiC are presented in this work. Three semi-insulating 6H-SiC substrates cut from different boules with varying off cut angle (on axis, 0.5° and 1.0° degrees off axis in the [112‾0] direction) were diced into 10mm x 10mm samples and quality EG grown on top. A home-build electrochemical cell was used with current applied though a 10% H2SO4 solution, with a Pt wire and exposed graphene as the anode and cathode respectively. Functionalization was determined using Raman spectroscopy and measured by an increase in D/G ratio, increase in fluorescence background and introduction of C-H bond peak at ~2930 cm-1. Components of the Raman spectra before and after functionalization of all samples used were analyzed to show a substrate dependent effect on functionalization with values such as D/G ratio and normalized fluorescence slope varying between the substrates.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3