Formation of Radiation-Induced Defects in Si Crystals Irradiated with Electrons at Elevated Temperatures

Author:

Markevich Vladimir P.1,Peaker Anthony R.1,Lastovskii Stanislav B.2,Gusakov Vasilii E.2,Medvedeva I.F.2,Murin L.I.2

Affiliation:

1. University of Manchester

2. National Academy of Science of Belarus

Abstract

Defects induced in silicon crystals by irradiations with 6 MeV electrons in the temperature range 60 to 500 oC have been studied by means of deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS. Diodes for the study were fabricated on n-type epitaxially grown Si wafers. The DLTS spectra for the samples irradiated at elevated temperatures were compared with those for samples, which were subjected to irradiation at 60 oC and subsequent isochronal anneals in a furnace. The dominant radiation-induced defects in the samples irradiated at temperatures lower than 400 oC were found to be vacancy-oxygen (VO) and interstitial carbon – interstitial oxygen (CiOi) complexes. The introduction rates of the VO and CiOi centers increased about twice upon raising the irradiation temperature from 50 to 400 oC. It is argued that this effect is associated with either a) the suppression of the annihilation rate of Frenkel pairs or b) a decrease in the threshold energy for displacement of a host Si atom upon increase in the irradiation temperature. Transformations of deep level traps due to divacancies (V2) and trivacancies (V3) to V2-oxygen and V3-oxygen complexes were found to occur upon irradiation or annealing at temperatures exceeding 250 oC. A clear anti-correlation between changes in the minority carrier life time induced in the p+-n diodes by irradiation at different temperatures and changes in the concentrations of radiation-induced vacancy- and vacancy-oxygen-related complexes was found.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3