Influence of the Highly-Doped Drain Implantation and the Window Size on Defect Creation in p+/n Si1-XGex Source/Drain Junctions
-
Published:2007-10
Issue:
Volume:131-133
Page:95-100
-
ISSN:1662-9779
-
Container-title:Solid State Phenomena
-
language:
-
Short-container-title:SSP
Author:
Kamruzzaman Chowdhury M.1, Vissouvanadin B.1, Bargallo Gonzalez Mireia1, Bhouri N.1, Verheyen Peter1, Hikavyy H.1, Richard O.1, Geypen J.1, Bender H.1, Loo Roger1, Claeys Cor1, Simoen Eddy1, Machkaoutsan V.2, Tomasini P.3, Thomas S.G3, Lu J.P.4, Weijtmans J.W.4, Wise R.5
Affiliation:
1. IMEC Interuniversity Microelectronics Center 2. ASM Belgium 3. East University 4. Texas Instruments 5. Texas Instruments Incorporated
Abstract
This paper presents an investigation of the impact of a Highly Doped Drain (HDD)
implantation after epitaxial deposition on Si1-xGex S/D junction characteristics. While the no HDD
diodes exhibit the usual scaling of the leakage current density with Perimeter to Area (P/A) ratio,
this is not the case for the HDD diodes, showing a smaller perimeter current density JP for smaller
window size structures, corresponding with larger P/A. This points to a lower density of surface
states at the Shallow Trench Isolation (STI)/silicon interface, which could result from a lower
compressive stress. In order to examine the role of the HDD implantation damage, Transmission
Electron Microscopy (TEM) inspections have been undertaken, which demonstrate the presence of
stacking faults in small active SiGe regions. These defects give rise to local strain relaxation and,
therefore, could be at the origin of the lower STI/Si interface state density. The window size effect
then comes from the active area dependence of the implantation defect formation.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Reference21 articles.
1. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie and A. Lochtefeld: J. Appl. Phys. Vol. 97 (2005), 011101-1. 2. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson and M. Bohr: in IEDM Tech. Dig. (2003). 3. P. Verheyen, G. Eneman, R. Rooyackers, R. Loo, L. Eeckhout, D. Rondas, F. Leys, J. Snow, D. Shamiryan, M. Demand, Th.Y. Hoffman, M. Goodwin, H. Fujimoto, C. Ravit, B-C. Lee, M. Caymax, K. De Meyer, P. Absil, M. Jurczak and, S. Biesemans: in IEDM Tech. Dig. (2005). 4. Y. Murakami and T. Shingyouji: J. Appl. Phys. Vol. 75(7) (1994), 3548. 5. C. Claeys, M. Bargallo Gonzalez, G. Eneman, P. Verheyen, H. Bender, R. Schreutelkamp, L. Washington, F. Nouri and E. Simoen: Paper to be published in the J. Electrochem Soc. (2007).
|
|