The Production of Vacancy-Oxygen Defects in Electron-Irradiated Cz-Si Initially Treated at High Temperatures and High Pressures

Author:

Andrianakis A.1,Londos Charalamos A.1,Misiuk Andrzej2,Emtsev Valentin V.3,Oganesyan Gagik A.3,Ohyama H.4

Affiliation:

1. Athens University

2. Institute of Electron Technology

3. Russian Academy of Sciences

4. Kumamoto National College of Technology

Abstract

We report studies of defects in electron-irradiated Czochralski-grown silicon (Cz-Si) subjected to thermal treatments at 1000oC and 1130oC with or without the application of high hydrostatic pressure of ~ 11 Kbars, prior to irradiation. The work is primarily focused on the impact of the pre-treatments on the production rate of the VO defect and its conversion to the VO2 defect. To this end, IR spectroscopy measurements were carried out and the amplitudes of the VO band (830 cm-1) and the VO2 band (888 cm-1) were monitored in the course of an isochronal anneal sequence up to ~ 550oC. Thermal treatments at 1000oC result in a reduction of the production rate of the VO defect. This rate however increases when pressure is applied during the treatment. The opposite behavior is observed for thermal treatments at 1130oC. The production rate of the VO increases slightly in heat treated samples but decreases substantially when high pressure is applied. Similar trends show the conversion of the VO to the VO2 defect for the corresponding treatments. The results are discussed taking into account the oxygen precipitates formed at the various treatments and their impact on the amount of primary defects available during irradiation which affects the production of the vacancy-oxygen defects.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3