Copper In-Depth Distribution in Hydrogen Implanted Cz Si Wafers Subjected to Two-Step Annealing

Author:

Frantskevich A.V.1,Fedotov A.K.2,Mazanik A.V.2,Frantskevich N.V.1

Affiliation:

1. Belarusian National Technical University

2. Belarusian State University

Abstract

In this work we have studied the in-depth distribution of copper deposited on the surface of the hydrogen pre-implanted Cz Si wafers depending on the conditions of their subsequent annealing. In the standard n-type 4.5 ∙cm Cz Si wafers different numbers of radiation defects were formed by hydrogen ion implantation with an energy of 100 keV (0.9 m projected range, Rp) for different fluences (11015, 11016, or 41016 at/cm2) at room temperature. Then a copper layer 50-nm thick was deposited on the sample surface by magnetron sputtering at temperatures 250 or 300 oC with subsequent annealing for 4 h at the same temperatures. Whereupon the surface was chemically etched and the samples were annealed in vacuum during 2 h at 700 oC. The depth profiles of copper in the near-surface layer were controlled by RBS investigations both in the random and channeling modes. These experiments have shown that the copper in-depth distribution strongly depends on the implantation fluence and temperature of the low-temperature annealing: in case of copper deposition at 250 oC a relatively strong peak determined by copper on the surface is observed in RBS spectra after all the above-described steps. On the contrary, for higher temperatures of copper deposition (300 oC) a significant decrease in the intensity of this peak is observed in RBS spectra. A maximal concentration of copper at a depth of the projected range, Rp, was observed for the samples implanted with a maximal fluence (41016 at/cm2).

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3