The Reliability of Solder Joints in Fine Pitch 3-D Stack Package by Taguchi Method

Author:

Chen Ching I1,Liu Yu Zhen2,Chen Jian Wei1

Affiliation:

1. Chung Hua University

2. Zhejiang Industry and Trade Vocational College

Abstract

To achieve high density and high performance, through-Silicon Vias (TSVs) have recently aroused much interest because it is a key enabling technology for three-dimensional (3-D) integrated circuit stacking and silicon interposer technology. In this study, a 3-D 1/8th symmetrical nonlinear finite element model of a stack die TSV package was developed using ANSYS finite element simulation. The model was used to optimize the package for robust design and to determine design rules to enhance 3-D stack package in view of bump reliability. An L8(2×7) Taguchi matrix was developed to investigate the effects of interposer thickness, TSV diameter, insulation (SiO2) thickness, chip thickness, substrate thickness, bump height, and bump diameter on bumps reliability. A temperature cycling test in the range of 0 °C to 100 °C was conducted by three cycles. The mechanical property of SAC leadless solder included time independent plastic and time dependent creep behaviors. The parameter of inelastic strain range of the third cycle was used to evaluate the bump life prediction. Two levels were chosen for each parameter to cover the ranges of interest. The results show that the smaller insulation (SiO2) and substrate thickness and the larger dimension for the other factors provide the best combination. These could be used as guides for further similar 3-D stack packages design.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3