Metallic Contamination Control in Leading-Edge ULSI Manufacturing

Author:

Shimazaki Ayako1,Sakurai Hiroki1,Iwase Masao1,Yoshimura Reiko1,Tada Tsukasa1

Affiliation:

1. Toshiba Materials Corporation Ltd.

Abstract

Contamination control has become a high-centered issue for the fabrication yield, performance and reliability of leading-edge ULSI devices. With the progress of sizing down dimensions in higher-density devices, complicated device structures and various novel electronic materials have been introduced, particularly in the latest devices such as CMOS and nonvolatile memory LSIs (Table I). On the other hand, high productivity is a necessity when you consider QTAT (quick turnaround time) and cost-effective flexible ULSI manufacturing lines. Therefore, effective contamination control coupled with adequate protocol has become essential in such production lines. The point of the protocol is minimization of damage caused by impurity metals diffused from these novel electronic materials [1-5].

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective methods for eliminating (NH4)2SiF6 powders generated on Si3N4 wafers processed by HF VPD;Journal of the Korean Physical Society;2022-10-13

2. Optimization of approach for metal contamination reduction;2022 China Semiconductor Technology International Conference (CSTIC);2022-06-20

3. Source of Metals in Si and Ge Crystal Growth and Processing;Metal Impurities in Silicon- and Germanium-Based Technologies;2018

4. Evaluation of Hafnium Contamination on Wafer Surfaces after the Wet Cleaning Process;Solid State Phenomena;2012-12

5. Novel Analytical Methods for Cleaning Evaluation;Handbook of Cleaning in Semiconductor Manufacturing;2011-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3