Analysis and Optimization of Process Parameters of Abrasive Flow Machining Process for Super Finishing of Non-Ferrous Material Nozzle

Author:

Patil Vijay B.1,Bhanage Amol S.1,Patil Rajat S.1

Affiliation:

1. MMIT Lohgaon

Abstract

This paper deals with the improving lay of finish and the superfinishing of the nozzles which is used in plasma cutting operation. This is basically alternative solution to present finish obtained by turning, drilling and reaming of the profiled bores and orifices. The advance micromachining process were developed, known as Abrasive Flow Machining (AFM) which is capable to altering the orifice (nozzle of plasma cutting machines) so that present process is to be improved without altering the geometry of the component. The effects of different process parameters such as number of cycles, concentration of abrasive, abrasive mesh size and media flow speed, surface finish are studied here. The design of the experiments 16(24) provides two levels for each variable. These levels are taken into consideration for finding out the effect of variation of parameters on the surface roughness of the copper orifice. The objective of paper is to learn how each parameter is considered for Abrasive Flow Machining such as: abrasive concentration in media, number of cycles, abrasive mesh size and media flow speed affects the surface roughness of copper orifice also to find out the mathematical relationship between surface roughness value and process parameters. Analysis of Variance (ANOVA) for the experimental data has been carried out and optimizations of abrasive flow machining process parameters were done. Also Analytic Hierarchy Process (AHP) done here for selecting hierarchy process parameter .Capabilities of the machine ultimately improved with the new technology developed.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3