Research on Permeability Coefficient of Heterogeneous Geomaterials Based on Digital Images

Author:

Liu Bowen1ORCID,Chen Junbin2ORCID,Ding Xinpin3ORCID

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. Hulunbuir Dongming Mining Co., Ltd., Hulunbuir 021500, Inner Mongolia, China

3. China Coal Research Institute, Beijing 100013, China

Abstract

According to the relationship between permeability and porosity of geotechnical materials, a finite element model representing pore and solid particles is generated randomly according to the porosity of a given finite element calculation model. According to Darcy’s law of flow distribution and steady seepage in the finite element random simulation section, the equivalent permeability coefficients at different porosities are calculated, and the relationship between the equivalent permeability coefficient and the porosity of rock and soil is studied. The results show that the equivalent permeability coefficient is proportional to the porosity with the same pore size. In order to study the seepage characteristics of structural planes of nonmaterial geotechnical materials in different strata contact zones, the formulas for calculating the deformation parameters and permeability coefficients of heterogeneous rock masses with single nonmaterial geotechnical materials are deduced theoretically, and the correctness and applicability of the formulas are verified by experiments. The rock mass sample selected in this paper is granite, which is simulated and analyzed by sandstone in the experiment. The results show that the permeability coefficients of coarse sandstone, fine sandstone, and heterogeneous rock mass are different under the same water pressure and confining pressure. This shows that the lithology on both sides of the nonmaterial geotechnical material surface has a significant influence on the permeability of the nonmaterial geotechnical material rock mass; the permeability coefficient of the nonmaterial geotechnical material rock mass decreases with the increase of confining pressure, the numerical change is limited to a certain confining pressure range, and the permeability coefficient tends to be stable when the confining pressure reaches a certain value. Comparing the theoretical calculation value of permeability coefficient of rock mass with the experimental result, it is found that the two values are in good agreement, which indicates the correctness and applicability of the theoretical calculation formula of permeability coefficient of rock mass of single intangible geotechnical material.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3