Stochastic Modeling and Analysis of Abrasive Flow Machining

Author:

Williams R. E.1,Rajurkar K. P.1

Affiliation:

1. Industrial and Management Systems, Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588-0518

Abstract

Finishing operations in the metal working industry represent a critical and expensive phase of the overall production process. A new process called Abrasive Flow Machining (AFM) promises to provide the accuracy, efficiency, economy, and the possibility of effective automation needed by the manufacturing community. The AFM process is still in its infancy in many respects. The process mechanism, parametric relationships, surface integrity, process control issues have not been effectively addressed. This paper presents preliminary results of an investigation into some aspects of the AFM process performance, surface characterization, and process modeling. The effect of process input parameters (such as media viscosity, extrusion pressure, and number of cycles) on the process performance parameters (metal removal rate and surface finish) are discussed. A stochastic modeling and analysis technique called Data Dependent Systems (DDS) has been used to study AFM generated surface. The Green’s function of the AFM surface profile models provides a “characteristic shape” that is the superimposition of two exponentials. The analysis of autocovariance of the surface profile data also indicates the presence of two real roots. The pseudo-frequencies associated with these two real roots have been linked to the path of the abrasive grains and to the cutting edges of the grain. Furthermore, expressions have been proposed for estimating the abrasive grain wear and the number of grains actively involved in cutting with a view towards developing indicators of media batch life. A brief introduction to the AFM process and related research is also included in this paper.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3