Spontaneous Tin (Sn) Whisker Growth from Electroplated Tin and Lead-Free Tin Alloys Coatings: A Short Review

Author:

Hashim Aimi Noorliyana1,Salleh Mohd Arif Anuar Mohd1

Affiliation:

1. Universiti Malaysia Perlis (UniMAP)

Abstract

Since the environmental regulations of Reduction of Hazardous Substances (RoHS) directive came into effect in Europe and Asia on July 1, 2006, requiring the removal of any lead (Pb) content from the electronics industry, the issue of tin (Sn) whisker growth from pure Sn and SnPb-free alloys has become one of the most imperative issues that need to be resolved. Moreover, with the increasing demand for electronics miniaturization, Sn whisker growth is a severe threat to the reliability of microelectronic devices. Sn whiskers grow spontaneously from an electrodeposited tin coating on a copper substrate at room temperature, which can lead to well-documented system failures in electronics industries. The Sn whisker phenomenon unavoidably gives rise to troubles. This paper briefly reviews to better understand the fundamental properties of Sn whisker growth and at the same time discover the effective mitigation practices for whisker growth in green electronic devices. It is generally accepted that compressive stress generated from the growth of Cu6Sn5 intermetallic compound (IMC) is the primary driving force for Sn whisker growth during room temperature storage. It is, therefore, important to determine that the relationship between IMC growth and Sn whisker growth. Reduction of stress in the IMC layer can therefore reduce the driving force for whisker formation and be used as a means for whisker mitigation. To date, there are no successful methods that can suppress the growth of Sn whisker as efficient as Pb addition. It is hoped that the Sn whisker growth mechanisms are understood better in the future, with better measuring and monitoring methodologies and systems being developed, the real solutions may be eventually developed to eliminate or mitigate the Sn whisker problems of green reliability lead-free electronic assemblies.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preliminary study on the effect of Ni addition on tin (Sn) whisker growth from lead-free solder coating;IOP Conference Series: Materials Science and Engineering;2020-10-01

2. Morphology Analysis of Spontaneous Tin (Sn) Whisker Growth on Lead-Free Solder;IOP Conference Series: Materials Science and Engineering;2019-08-01

3. Tin Whiskers 101: 2019;2019 Pan Pacific Microelectronics Symposium (Pan Pacific);2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3