Affiliation:
1. NASA Glenn Research Center
2. Vantage Partners LLC
Abstract
While NASA Glenn Research Center’s “Generation 10” 4H-SiC Junction Field Effect Transistor (JFET) integrated circuits (ICs) have uniquely demonstrated 500 °C electrical operation for durations of over a year, this experimental work has also revealed that physical cracking of chip dielectric passivation layers ultimately limits extreme-environment operating lifetime [1-3]. The prevention of such dielectric passivation cracks should therefore improve IC high temperature durability and yield, leading to more beneficial technology adoption into aerospace, automotive, and energy systems. This report describes Generation 10.2, 11.1, and 11.2 die tested under unbiased and unpackaged accelerated age testing at 500 °C, 600 °C, 720 °C, and 800 °C in air-atmosphere ovens for 100-and 200-hour duration. Additional samples were separately subjected to 10 thermal cycles between the same high temperatures (with 10-hour high-temperature soak each cycle) and 50 °C. It is shown that having two stoichiometric Si3N4 layers in the interconnect dielectric stack substantially decreases the amount of dielectric cracking observed following these oven tests.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献