Wettability and Bond Shear Strength of Sn-9Zn Lead-Free Solder Alloy Reflowed on Copper Substrate

Author:

Tikale Sanjay1,Sona Mrunali1,Prabhu K.N.1

Affiliation:

1. National Institute of Technology Karnataka

Abstract

Lead-free solders are environment friendly and are in great demand for microelectronic applications. In the present study, Sn-9Zn lead free solder alloy was solidified on Cu substrate for different reflow times from 10 to 1000s. The influence of reflow time on wetting, formation of intermetallic compounds (IMCs) and bond shear strength was studied using dynamic contact angle analyzer, bond tester and scanning electron microscopy. The results indicate that, the wettability of the solder alloy increased with increase in reflow time. Microstructure study revealed the presence of Cu5Zn8 and CuZn5 IMCs at the interface. The thickness of an IMC increased with increase in the reflow time. The mean thickness of about 11μm for Cu5Zn8 IMC layer was observed for the reflow time of 1000s. The thickness of CuZn5 layer increased up to a reflow time of 100s and decreases thereafter. The bond shear strength increased up to 100s and decreased with increase in reflow time. The decrement in shear strength at higher reflow time is mainly due to excessive thickness of Cu5Zn8 IMC layer and diffusion of Sn from bulk solder towards the substrate. The excessive thick IMC layer exhibited pre micro-cracks led to the brittle failure of bond under the influence of shear stress.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3