Fabrication and Application of 1.7KV SiC-Schottky Diodes

Author:

Chen Gang1,Bai Song1,Liu A.2,Wang Lin2,Huang Run Hua2,Tao Yong Hong2,Li Yun1

Affiliation:

1. Science and Technology on Monolithic Integrated Circuits and Modules Laboratory

2. Nanjing Electronic Devices Institute

Abstract

High voltage 4H-SiC Ti Schottky junction barrier schottky (JBS) diode with breakdown voltage of 1700 V and forward current of 5 A has been fabricated. A low reverse leakage current below 3.8×10-5A/cm2at the bias voltage of -1700 V has been obtained. The forward on-state current was 5 A at VF= 1.7 V and 15.8 A at VF= 3 V. The active area is 1.5 mm × 1.5 mm. The turn-on voltage is about 0.9 V. The on-state resistance is 3.08 mΩ·cm2. The doping and thickness of the N-type drift layer and the device structure have been performed by numerical simulations. The SiC JBS devices have been fabricated and the processes were in detail. The die was assembled in a TO-220 package. The thickness of the N- epilayer is 17 µm, and the doping concentration is 3.2 × 1015cm−3. The number of floating guard p-rings was chosen to be 25, the distance between the rings was chosen to be 0.7 µm ~ 1.3 µm and the width of the p-rings is 2.5 µm. We use the PECVD SixNy/SiO2as the passivation dielectric and a non photosensitive polyamide as the passivation in the end. The reverse recovery current Irwas 1.26A and the reverse recovery time Trrwas 26ns when the diode was switched from 5A forward current to a reverse voltage of 700V. The reverse recovery electric charge Qrrof 16nC was obtained.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SiC and GaN Power Devices;More-than-Moore Devices and Integration for Semiconductors;2023

2. Optimization of Forward and Reverse Electrical Characteristics of GaN-on-Si Schottky Barrier Diode Through Ladder-Shaped Hybrid Anode Engineering;IEEE Transactions on Electron Devices;2022-12

3. Review of Silicon Carbide Processing for Power MOSFET;Crystals;2022-02-11

4. 2.3-kV, 5-A 4H-SiC Ti and Ni JBS Rectifiers manufactured in Commercial Foundry: Impact of Implant Lateral Straggle;2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia);2020-09-23

5. Applications of Thermoelectrical Effect in SiC;Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3