The Effects of Current Density on Microstructure and Properties of Electrolytic Copper Foils

Author:

Cheng Xi1,Li Yan Feng1,Huang Guo Jie1,Yin Xiang Qian1,Li Yong Zhen2,Yao En Dong2,Ma Xiu Ling2,Xie Xiang Sheng2,Qi Shan Long2,Li Zi Ming2

Affiliation:

1. GRIMAT Engineering Institute Co. Ltd

2. Qinghai Electronic Material Industry Development Co.Ltd

Abstract

Under the condition of controlling the relevant electrolysis process parameters, 12μm-thick electrolytic copper foils were prepared by adjusting the electrodeposition time under different current densities. The surface morphology, mechanical properties and textures of the electrolytic copper foil at different current densities were studied using SEM, XRD, EBSD and universal testing machines. The fracture mechanism of the copper foil at different current densities was also analyzed in this paper. The results show that as the current density increases, the surface of the copper foil become larger and sharper. The main orientation of the crystal surface is {220}, and the preference firstly increases and then decreases. The high preference of the {220} crystal surface of the copper foil reduces its tensile strength. When the current density is from 8 to 14 A/dm2, the preferential degree of {111} decreases with the increase of current density, while the preferential degree of {220} increases, and the tensile strength of copper foil decreases. When the current density is from 14 to 26 A/dm2, the preferential degree of {111} and {311} increases with the increase of current density, while the preference of {220} crystal surface decreases, and the tensile strength of copper foil increases. The elongation of copper foil is affected by the fracture mechanism. When the current density is 8 A/dm2, the copper foil is plastically fractured and has high elongation. When the current density is 14A/dm2, the copper foil is brittle fracture and the elongation is low. When the current density is 26 A/dm2, the copper foil is plastically fractured but the effect of hydrogen evolution at high current density reduces the plasticity of the copper foil.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3