Machinability Improvement by Workpiece Preheating during End Milling AISI H13 Hardened Steel

Author:

Suhaily Mokhtar1,Nurul Amin A.K.M.1,Patwari Anayet Ullah2,Razak Nurhayati Ab.2

Affiliation:

1. International Islamic University Malaysia (IIUM)

2. Islamic University of Technology

Abstract

Hardened materials like AISI H13 steel are generally regarded as s difficult to cut materials because of their hardness due to intense of carbon content, which however allows them to be used extensively in the hot working tools, dies and moulds. The challenges in machining steels at their hardened state led the way to many research works in amelioration its machinability. In this paper, preheating technique has been used to improve the machinability of H13 hardened steel for different cutting conditions. An experimental study has been performed to assess the effect of workpiece preheating using induction heating system to enhance the machinability of AISI H13. The preheated machining of AISI H13 for two different cutting conditions with TiAlN coated carbide tool is evaluated by examining tool wear, surface roughness and vibration. The advantages of preheated machining are demonstrated by a much extended tool life and stable cut as lower vibration/chatter amplitudes. The effects of preheating temperature were also investigated on the chip morphology during the end milling of AISI H13 tool steel, which resulted in reduction of chip serration frequency. The preheating temperature was maintained below the phase change temperature of AISI H13. The experimental results show that preheated machining led to appreciable increasing tool life compared to room temperature machining. Abrasive wear, attrition wear and diffusion wear are found to be a very prominent mechanism of tool wear. It has been also observed that preheated machining of the material lead to better surface roughness values as compared to room temperature machining.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3